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1. INTRODUCTION

The recent interest in the near-millimeter-wave region of the electromag-

netic spectrum has created a need for attenuators, phase shifters, isolators,
and other devices at these frequencies. Attempts to scale standard ferrite
devices from the X band (9 GHz) to this frequency range are frustrated by the
requirement of high static magnetic fields. At X band the magnetic field
required for ferromagnetic resonance is approximately 3,000 gauss (G*)l while
at 90 GHz the field required for ferromagnetic resonance is approximately
30,000 G. Such high fields are difficult to generate for use in practical,
portable devices. One method of overcoming this obstacle is to use ferrites
with large internal fields. Then the resonance can be achieved by applying a
modest external field. 2  However, such ferrite materials generally have a
relatively large intrinsic loss and this leads to devices that have a large
and undesirable insertion loss. We wish to develop a new technique of using
conventional, low-loss ferrite material in an unconventional manner to produce
the necessary devices at near-millimeter wavelengths.

In this report we investigate the possibility of building a low applied
magnetic field isolator or nonreciprocal phase shifter at 90 GHz or at higher

" frequencies using standard, low-loss ferrites. The system studied is shown in
figure 1. It consists of a thin ferrite slab backed by a metal plate. The

.* static applied magnetic field is in the plane of the ferrite slab. Solutions
to Maxwell's equations, including the equation of motion of magnetization, are
given. These equations are applied to the particular geometry, and it is
shown that under appropriate conditions only the dominant surface wave mode
propagates. The dominant surface wave is the transverse electric (TE) surface
mode with the electric vector parallel to the static magnetic field.
Conditions on the slab thickness are found such that only the dominant TE mode
propagates. As the static magnetic field is increased from zero, the phase of
the forward wave (waves propagating along the positive y-axis), differs from
the phase of the backward wave (waves propagating along the negative y-axis),
and this can be used as a nonreciprocal phase shifter. If the static magnetic
field is increased and an appropriate slab thickness is chosen, one of the
waves, either the forward or reverse wave, is cut off, and this can be used as.-
an isolator. Furthermore, conditions on the slab thickness and static mag-
netic field can be found such that neither forward nor reverse waves
propagate. The field strength can then be changed, and one of the waves will
propagate. Thus, by changing the applied magnetic field suddenly, we have a
switching device.

1B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, McGraw
Hill, New York (1962). [This book contains a large number of practical
applications of ferrites to microwave devices. Much of the pioneer work on
yttrium iron garnet single crystals and applications of ferrites to microwave
devices was done at Harry Diamond Laboratories. Reference to this work is
contained in the selected bibliog.raphy section.]

H. Von Aulock, Handbook of Microwave Ferrite Materials, Academic Press,
New York (1965), p 451.

*(gauss) = (tesla) x 10- 4

5



.. ,1

Z 2. THEORY

* (a) (Ho In general, Maxwell's equations
(in cgs units) when the fields vary
harmonically as e

- iwt are 3

y) x VxE = ikl
x=a

METAL FERRITE FREE SPACE VxH = -ikD + A J
C

V.B=0 , ()

and

METAL V-D =4wp

with

METAL FERRITE FREE SPACE
ky_ _ _

x=a For our purposes, we shall assume that
METAL J and p are zero; thus, the electric

field, E, and the electric displace-
Figure 1. Coordinate system for two ment, D, are related by
geometries applicable to present
analysis. D=E . (2)

With these assumptions and equation (2), we have

V.E = 0

and (3)

VxH = -ike .

The configurations we have chosen are shown in figure 1. The analysis is
equally applicable to the configuration of figure la or figure lb. We assume
that none of the fields vary in the z direction, and we assume a TE mode in
the structure (E = E = 0, Ez * 0). With these assumptions, the first ofx Y
equations (1) can be written as

Ez = ikB x

and (4)

E aB-E = ikB •O

ax z y

3j. D. Jackson, Classical Electrodynamics, second edition, Wiley, New York
(1975), p 217.

6



In appendix A we obtain the B, H relationship

Bx = Hx +iKHy

and (A-13) 

By= Hy - iKHx

When these relations are used in equation (4) we get

-E, ik(jiH + iKHy)7 ' -k x  Y)

and (5)

- y.

The results given in equation (5) can be used to determine the magnetic fields
as

=x (p FY E i'c - Ez)/[ik(U 2 
-K

2 )]

and (6)

Hy -( E 7 Ez)/[ik(p2 -K
2 )]

Equation (6) determines the magnetic field components once the electric field,
Ez , is known. To determine Ez, we must obtain the wave equation satisfied by

this field component.

To obtain the wave equation for E we take the curl of the first ofz
equations (1),

VxVxE = ikVxB

and in Cartesian coordinates

V(V.E) - V 2E = ik(VxB)

From equation (3) and since E has only a z component, we obtain

-V2EZ =ik(-3 B~ a By (7)

where

V a2 a2

axz DT7

The result on the right side of equation (7) can be reduced by using equation
(A-13) and VeB = 0 to obtain

V2E + k 2 L ( 2 - K2 )Ez = 0 . (8)

7
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This is the wave equation satisfied by E for the region occupied by the
z

ferrite slab. To obtain the corresponding wave equation for the exterior
region (x > a), let K = 0 and E =  1 in equation (8); thus

V 2E + k 2EZ = 0, x > a . (9)z z

If we assume that we have a wave propagating along the y-axis so that all the
fields vary as e then equations (8), (9), and (6) can be written as

dx2  [k 2 (W2_ K2 ) q2]E 0 , 0 < x < a

dxdx d
2

dx E + (|k2 - q21E z : 0x > a

H (q x + K . )/[k(p 2  K 2 )] ,0 x a

x dE

H t ,i ,- x> a (10)
x k

Hy --- -L + qKE)/[ik(p 2  K2 )] 0 < x < a

and

-1 dEHy = - T- x > a '.'

ikdxxa

where

E -~iqy
z Ee

The nonreciprocal term appears in Hy, in the product qK. If the magnetic

field is reversed, Ki(-Ho) = -K(Ho) (see eq (A-14) and (A-11), app A), then H
*yreturns to the same form if we reverse the direction of propagation. That is,

qK(Ho) = (-q)<(-Ho) . (11) ..-

However, the results given in equations (11) and (10) are not sufficient to
assure nonreciprocity. To achieve a truly nonreciprocal device it is neces-
sary to have some asymmetry in the x direction. For the case considered here,
the asymmetry is supplied by the conductor at x = 0. Asymmetry could also be
supplied by replacing the conductor by a dielectric slab. The solution for a
dielectric slab is considerably more complicated than for the conducting plate
considered here, but the problem using a dielectric slab may be more useful
for a practical device.

We wish to have surface waves propagating along the ferrite slab, so we
assume solutions for equation (10) of the form

8



E=Asin (r X) , <x < a

and (12)

E =le - Fr x  x > a,

where

r? k2 c(1 q2-

and

r2 =q 2 _k 2

The corresponding magnetic fields are obtained using equation (10). The

boundary condition at x = 0 is that E. = 0, and the solution chosen, in

equation (12), assures that this boundary condition is satisfied. The bound-

ary conditions at the surface of the slab (x = a) are that E a 1y arez y
continuous. Using equations (12) and (10), and applying these bou. r' con-
ditions, we obtain

=-r = [qK + Pri cot (ria)]/(p2 - K2 ) (13)

This is the transcendental equation determining the propagation cons . 1, if

the relationships of q with r and ri given in equation (12) are usen.0 1

In our discussion of equation (11) we pointed out that the nonreciprocity

arises due to the product qK. This is also true in equation (13). If we
express r 0 and 1'i in terms of q, using equation (12), the only unknown in

equation (13) is q. All the quantities in equation (13) are even functions of

the magnetic field (P, ri, and ro), except that K is an odd function of mag-
netic field ((-Ho) = -K(H)). Thus, if we find the solution of equation (13)

for H positive (q+) and the solution of Ho negative (q_) assuming q positive
in both cases, then Aq = q+ - q_ would be the differential phase shift. The

same result could be obtained by assuming first q positive, then q negative,
but the magnetic field H > 0 in both cases. Because of the complicated

manner in which the magnetic field enters in equation (13), we would expect
* this differential phase shift, Aq, to vary with the strength of the static

magnetic field, H . Thus, by varying the applied magnetic field, H0 , the

differential phase shift can be varied. 1

3. COMPUTATION

For the purposes of numerical evaluation it is convenient to introduce

several dimensionless variables

r ky -

ri = kyi

1B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, McGraw

Hill, New York (1962). [Detailed descriptions of various nonreciprocal phase

shifters are given in the later chapters of this work.]

9
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(14)

and

q =ko

Using these variables introduced by equation (14) in equation (13) we Obtdin

Yo [OK + cYi Cot (kaYi)]/(p2 
- K2 ) , (15)

and equation (12) becomes

y 2  G 2 ,

and (16)

y2 = _ K 2)/p 2 .

The solutions of equations (15) and (16) then give the dimensionless

quantities yof yi, and a for any particular ferrite. Because of the

complicated nature of these equations, it is extremely difficult to obtain a

solution, particularly when magnetic losses and dielectric losses are
considered. We shall restrict ourselves to the lossless case. Losses in a
dielectric slab (H = 0 in eq (15)) are considered in appendix B.

The lossless case for the magnetic part is given by letting a = 0 in

equations (A-11) and (A-14). If we assume that the dielectric constant is
real (to consider losses in the dielectric, we assume e = E' + ic", with E" >

0), then the roots of equation (16) are all real. A useful result can be

obtained from equation (15) if we investigate the li-iit yo + 0+ (that is,

o + 0+). This situation corresponds to the limit where the surface wave on

the ferrite is minimally bound. If we let yo = 0 in equation (15) we have

K+11Y cot (kayi) = 0 (17)

and for yo = 0 equation (16) yields

0=1 ,

1(18
Y = [EC(2- k 2 )/- 1 ]

and since equation (17) is even in yi, we need only consider solutions for
which yi > 0. The solution of equation (17) for kay i is given by

kaYi = tan - ' + p (19)

where p = 0, 1, 2, . . . (Actually p can take on negative values, but for our

purposes p > 0 is sufficient.) The value of p in equation (19) is the

smallest integer that makes the right side positive (larger positive values of ."

10
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p give higher modes). Since yi is given by equation (18), equation (19) gives

the thickness, a, of the ferrite slab for a particular value of magneti-c

field, H0 . Thus we have

a~ ~~- Ian1I ~ ,(20)?2a+ an -  ' P T

and if we let Ho  -Ho we have

a_= ji [tan - (-Yi ) + p-7] , (21)

since K(-Ho) = -K(Ho).

For the lossless case (a = 0) using equations (A-14) and (A-11), we can

write the quantities entering equations (21) and (18) as

2 = (H1 - B)(H 1 + B)

HI H2 H1 + H2 '

4 rMHK 1
(HI - H2 (H1 + H2 )

and

1 H - H

where

B = H + 4M

H 2 = /B/ ,

H = W/Y

The analytical form corresponding to a Brillouin function 4 for spin 1/2 parti-

cles

M(H) = M tanh (sH) , (22)
0

is assumed with s chosen by assuming M(H) to be 90 percent of the saturation

magnetization, Mo , at a field of 500 Oe.*

The slab thickness, a+, for magnetic fields in the positive z direction

given in equation (20) with the smallest value of p+ gives the lowest mode

cutoff. That is, any slab thinner than a+ will be cut off. The higher modes

4C. Kittel, Introduction to Solid State Physics, fourth edition, Wiley, New

York (1971), p 505.

*(Oe) = (A/m) x 79.577

111
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are given by larger values of p+ in equation (20). The slab thicKness given
in equation (21) is for the magnetic field in the negative z direction. The
resulting thicknesses, a+ and a_, f - the lowest mode for yttrium iron garnet
(YIG) are shown in figure 2. The frequency chosen is 90 GHz and the
properties of YIG are from Von Aulock. 2  From figure 2 we see that at H =

3000 Oe, for a slab thicker than 283 jim, radiation propagates in both direc-
tions. With Ho = 3000 Oe and for a slab between 283 and 276 pm, only waves
propagating in the positive y direction are allowed and we have an isolator.
For slabs less than 276 pm and a field of 3000 Oe, no wave propagates. There-

fore, curves as given by figure 2 can be used to design isolators, switches, "
and nonreciprocal phase shifters for ferrite materials, provided the material

has low dielectric and magnetic losses. Even in cases where these losses are
not negligible, data as presented in figure 2 are helpful for design purposes,

provided operating points are chosen as far as possible from the cutoff
points. Figure 3 shows the slab thicknesses a+ and a for a nickel zinc
ferrite at 90 GHz. The slab thicknesses are reduced because of the larger

dielectric constant (C 12.5 as compared to E- 10 for YIG). The differen-

tial thickness given by

Aa=a - a (23)

is increased because of the larger saturation magnetization (4wM o  1750 G for
YIG, 4nM = 5000 G for nickel zinc ferrite). In both figures 2 and 3, the low

0
applied magnetic field values (H0 < 500 Oe in fig. 2 and H° < 1000 Oe in
fig. 3) should not be given too much consideration.

286.0"

* .

283.6

C6 281.2 4 MO 1750.0 G

10000
f =~ 90 GHz ,.-

278.8

U.nA a c
276 4.-

274010.0 1600.0 3200.0 48000O 6400 0 8000 0 .-

HoO

Figure 2. Slab thickness as a function of magnetic field for Y3 Fe 5 012 (YIG)

with reported values at X-band frequencies.

2W. H. Von Aulock, Handbook of Microwave Ferrite Materials, Academic Press,

New York (1965), p 451. _9

12
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NICKFL ZINE FFRRt'
r  

"

- -

0 10 20 34w0M0 5000 G 7
= 125... " i

I = 90 GHz-
Mm

250

240i I I ""
0 1000 2000 3000 4000 5000 6000 70D0 -

H0(0ei

Figure 3. Slab thickness as a function of magnetic field for nickel-zinc

ferrite.

To illustrate more clearly the effect of changing only one of the vari-
ables of a material, such as the dielectric constant or saturation magnet-
ization, several hypothetical cases are considered using the values for YIG as
a starting point. In figure 4 the dielectric constant of the ferrite is
increased to 12 from the original value (10) used in figure 2. The results
show that thinner slabs are required for similar behavior, but that the dif-
ferential thickness, Aa, remains essentially unchanged from its original value
in figure 2. Increasing the dielectric constant to 14 has essentially the
same effect, as can be seen in figure 5. With the dielectric constant at 10
but with the saturation magnetization increased from 1750 (in fig. 2) to 2000
G, the calculations are repeated and the results are shown in figure 6.
Comparing these results with those in figure 2, we see that there is only a

slight change in the differential thickness, Aa. Since the saturation magnet-
ization changes with temperature,2 the results shown in figure 6 indicate that
an isolator would not be very sensitive to changes in the ambient temperature.
Figures 7 and 8 have larger departures of the saturation magnetization from
the value of 1750 G used in figure 2. They show that the differential thick-
ness increases with saturation magnetization, but the slab thickness is
essentially constant for changes in 4iTM. Therefore, the results given in
figures 2 through 8 would indicate that, to a good approximation, we can
assume that increasing the dielectric constant decreases the required slab
thickness and increasing the saturation magnetization increases the differ-
ential thickness. These two effects are independent.

2W. H. Von Aulock, Handbook of Microwave Ferrite Materials, Academic Press,

New York (1965), p 451.

13
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256.0

254.0
4nMo  1750.0 G

0012.000 Figure 4. Slab thickness as

252.0 f= 90GHz a function of magnetic field
a for a hypothetical YIG sample

(dielectric constant assumed "250.0 to be 12).

248.o L

0.0 1600.0 3200.0 4800.0 6400.0 8000.0
H°(Oe)

238.0 .

236.0 -a_ ,

Figure 5. Slab thickness as 4 234.0
a function of magnetic field 4vMo=1750.0 G "
for a hypothetical YIG sample 5d 14.000
(dielectric constant assumed 232.0 f 90 GHz
to be 14). a

230.0

228.0 II I I

0.0 1600.0 3200.0 4800 0 64000 8000.0

Ho(Oe)

286.0. ". i

Figure 6. Slab thickness asm"280.4 
= 10.000

c6 = a function of magnetic field
Uj for a hypothetical YIG sample
S26 (saturation magnetization

assumed to be 2000 G).
Cd,

274.8 %.

272.01 , I I J I , I ,/
0.0 1600.0 3200.0 4800.0 6400.0 8000.0

Ho(Oe)

14
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.:.: 288.0

284.8-

281.6 4vM0 =2500.0G Figure 7. Slab thickness as

4- =10.000 a function of magnetic field

278.4 =0 for a hypothetical YIG sample

(saturation magnetization
assumed to be 2500 G).275.2

272.0 I

0.0 1600.0 3200.0 4800.0 6400.0 8000.0

H0(Oe)

N290.0 -.-

286.4

Figure 8. Slab thickness as (
a function of magnetic field 2 4WM030000GC. 10.000 - .
for a hypothetical YIG sample f90GHz
(saturization magnetization - 279.2
assumed to be 3000 G).

275.6

272.0 I I I
0.0 1600.0 3200.0 4800.0 6400.0 8000.0

H0(Oe)

Next, the frequency sensitivity of the solutions to equations (20) and
(21) are investigated. For the purpose of this investigation YIG was chosen
with e = 10 and 4wM O = 1750 G as in figure 2. Figure 9 shows the variation of
slab thickness, a., and differential thickness, Aa, as a function of magnetic
field for three different frequencies (80, 90, and 100 GHz). In figure 10 the
thickness, a , is plotted versus frequency from 80 to 100 GHz for a magnetic
field H = A000 Oe. The slab thickness for both a+ and a decreases with
increasing frequency. Thus, if the dielectric constant decreases with fre-
quency in the correct manner, the slab thickness would remain constant.
Unfortunately, ferrites with dispersion in any region of interest have a
prohibitive amount of loss in that region.

4. CONCLUSION

We have found the conditions under which a surface wave propagates on a
ferrite slab backed by a metal conductor. The only region investigated was
that with the static magnetic field much less than the magnetic field required

15
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350.0

326.0 80 GHz a-

:La+ Figure 9. Slab thickness as a

302.0 function of magnetic field for
zYIG for three frequencies with

d 9Greported values of E and 41TM
278.0C a a+ at X band.

5.0J 100 GHz a .

230.0 , . •-
0.0 1600.0 3200.0 4800.0 6400.0 8000.0

Ho(Oe)

en=O.02-

Figure 10. Slab thickness as 0.035- -11=001 65

a function of frequency for
YIG with reported values of E 0.030f=90Gz6
and 4wM at k band. 0.310 .0

'6 e=10.01

0.025- -55

0.020- 50..

I I I I I I

300 350 400 450 500 550 600 650 700

SLAB THICKNESS, a(IMm)

for ferromagnetic resonance in the material. The results reported here are

for the dominant TE mode of the system. Magnetic and dielectric losses were

assumed to be negligible in this analysis. It is expected that these results

will be useful in the design of a practical device, provided they are used in

a region some distance from an abrupt cutoff. The abrupt cutoff points should

be softened by the introduction of losses in a manner similar to those used in

waveguides when the conductivity of the walls is included.

The results of the analysis are presented in the form of graphs that

border the three regions: both forward and reverse propagation but with

different phase velocities, only forward propagation, and no propagation. iAt .

any given frequency these regions are outlined by slab thickness as a function

of applied magnetic field. The forward and reverse propagation in the first

region suggests its use as a phase shifter, and the second region can be used

for isolation. The third region can be used for switching if the applied

magnetic field is suddenly changed from this region to region two.

16
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Losses were considered only for the particular case where the applied

magnetic field was zero and magnetic losses were ignored. Small dielectric
losses were introduced and the complex propagation constant, q = q' + iq",
along the surface was calculated. It was found that for slab thicknesses
restricted so that only the dominant mode propagates, the value of q" was -
smallest for the minimum slab thickness. A maximum occurred in q" near the
middle range of slab thickness, with q" gradually decreasing as the thickness
of the slab increases.

The predicted slab thickness for YIG falls in the range of thick films
which can be fabricated, and perhaps it could be deposited on the conductor by
a method similar to liquid phase epitaxy. If single-crystal films are de-
sired, the film probably would have to be deposited on a nonmagnetic single-

crystal substrate, such as yttrium gallium garnet, where the crystal cell size
matches the magnetic film cell size. In such cases, the analysis of the
system would have to be altered considerably from the one presented here.

In further analysis, magnetic as well as dielectric losses in the ferrite
* slab should be considered. The inclusion of these losses would give the

insertion loss for both the phase shifter and isolation mode of operation.
Further, for an isolator, the degree of isolation could then be estimated much
more realistically. 4
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APPENDIX A

The equation of motion of magnetization, as given by Landau and
Lifshitz, 1 is

A' = y(K-xH, -T) [,4x,('H'4 ] , (A-1)

where y is the gyromagnetic ratio and a is the damping constant. The other
constants in the second term on the right in equation (A-1) are added for
convenience so that a is dimensionless. In most of the materials that we
consider, the damping is small and it is convenient to use Gilbert's -
approximation.2 That is, in the second term on the right we assume that

1
M'xH' -- A' . (A-2)

The equation (A-i) becomes

A' = y('x H') - (IAl (A-3)

The result given in equation (A-3) agrees with the result of equation (A-I),
if term of order a2 and higher are ignored. At the low power levels that we
considered, it is sufficient to linearize equation (A-3) by letting

H' = ez HO + H"
and (A-4)

M' = e M + M"z 0
with the conditions

I << H
and ., << Mi i o

In this equation ez is a unit vector along the z-axis. In equation (A-4), we
assume the static magnetic field, Ho, and the static magnetization, Mo , to be
in the z direction. The assumption of small amplitude signals also leads to
M" and H" having only components transverse to z.

If we use equation (A-4) in equation (A-3) we have

" (A,,e )- H- (+ M 4t") M (A-5)
z 0 z 0 M4 zo0

0

where we assume that 1141 = Mo . We assume that all the time-varying quantities
have a harmonic time dependence, e- i

ut, and we let

1L. Landau and L. Lifshitz, On the Theory of the Dispersion of Magnetic
Permeability in Ferromaqnetic Bodies, Physik Zeitschrift Sowjetunion, 8
(1935), 153.

2 T. A. Gilbert, Armour Research Foundation, Rept. No. 11 (January 25, 1955).
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-4"= 4e
- iwt

and (A-6)
H" = He-iWt

with M and H time independent but still spatially dependent. Using equation

(A-6) in equation (A-5) and expressing the results in Cartesian components

gives
-iM= y(MYH - MoHy) - iwaMy

and (A-7)

-iWMy = 0SHx - M xHo) + iwaM x

To obtain the relation of M to H, it is convenient to use the circular

polarized quantities,

M =1 j iM
x y

and (A-8)

H =H tiH* x y .

Substituting equation (A-8) into equation (A-7) we obtain

TYM H
M o (A-9)

* w(. ic,) T yH

In the cgs system the relationship of B, H, and M is

B = H + 4wK (A-10)

so that we can write

From equations (A-10) and (A-9) . . -

y41TM° .. -'

w(l ic) yH (A-i )

The properties of ferromagnetic materials are characterized by 4irM and (x.

However, the damping parameter a is replaced frequently by the linewidth,

measured at constant frequency as a function of H 0 The parameter a is then

related to the linewidth, AH, by

WyH (A-12)
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where AH is half of the full linewidth at half maximum of the absorption.

Sometimes the full linewidth at half maximum of the absorption is reported;

thus, equation (A-12) must be used with caution.

The circular polarization form of the magnetic permeability isconvenient for electromagnetic boundary value problems when the ferrite

material has circular symmetry about the static magnetic field, Ho0. However,

for our problem, the permeability tensor relation of B and H is more
convenient. This relation is usually written as

Bx = PJH + iKHy
x x y

and (A-13)
By = y- iKHx

From equation (A-11) we find

VI=(I+ - )/2

and (A-14)
K -- (Vu - V_)/2•

For the case where a is small and the static magnetic field is far below

resonance (yH << w), we have

7HoY( " M 0 ] y( 4 Mo)

VI 1
-yH y(4lrM y(n

P 2 - + i (A

a n d .7
y(4orM y)o(4it)

K 0 + 2ia 02

2S
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APPENDIX B

During the course of this investigation we consider only lossless

material. The reason for this assumption is the difficulty of developing a

general technique for examining the roots of the resulting transcendental

equation which determine the modes of propagation (an example is (13) in the

main text).

In this appendix we examine the consequence of assuming that the mag-

netic field is zero and the only source of losses is the dielectric. Further,
if we assume the losses are small, the resulting equations for determining the

propagation constant can be solved by a perturbation technique. We assume

that the dielectric constant is given by "

= ' + ic" 03-1)

. and further assume that E" << e'. If we let H = 0 (p = 1, < = 0) in equation

*I (13) in the main text, we obtain

Yi cot (KaYi) = -yO (B-2)

with

]'"2 2
Yi + Yo = - 1

and

2 +22=I+ 2
,- o "-

Now if we assume

Y. = Y' + iT'.1 . 1 1

To = yT + iy", (B-3)
0 0 0

and

O- 0 ' + ia"

with all the imaginary parts small compared to the real parts, th.en

cot (kay. - cot (kay!l - ikay![1 + cot 2 (kay!)] (B-4)

and
i(0- 2y'y")

YO + iyo" = ' + (B-5)
0 0 Y0

4 Thus the real part of equation (B-2) satisfies

Yi cot (kay) -y' (B-6)

so that the real part of y, satisfies the same equation as equation (B-2)
when yi is replaced by yP. The imaginary parts of equations (B-4) and (8-5)
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satisfy

kaYj.[1 + cot2 (Kayf) " - 2yiy-)/y o  (B-7)

which can be further reduced by using equation (B-6) and

Y2 + Yo ' - 1

to give "
C,,y,

ii1i (B-8)

i 2CC' - 1)(1 + Kayo8

The remainder of the imaginary parts of the quantities of equation (B-3) can

be obtained by using the result given in equations (B-8) and (B-2) to giveI 0

yo (V"/2 - !,i/i

= 2)1/2

(B-9)

and

al I U /0I

a" = 0

Thus, once the solutions of equation (B-6) are determined, the quantities

given in equations (B-8) and (B-9) can be determined.

The solution for equation (B-6) has been obtained for e' = 10 and C"

0.01 for the dominant mode. The region of interest of thickness a in equation

(B-6) is easily shown to be

< a < , (B-10)

2k/O 7  
- - 2k/' -1

where for smaller thickness than the lower limit no surface wave propagates,
while for larger thickness than the upper limit both the dominant mode and

higher modes propagate. The solution for equation (B-6) for f = 90 GHz, C' =
10, and C" = 0.01 for values of a in the interval is given by equation

(B-10). The results for q" (q" = ka") are shown in figure B-i. Since all the

* yield quantities vary as e ik ay ,  a" gives the decay of the fields in the di-

.- rection of propagation as e-ka"Iyl. The results show that for thin slabs (a

near the lower limit in eq (B-10)) the attenuation is small. As the slab

thickness increases, the attenuation increases, reaching a maximum, and then

decreases as a approaches the upper limit in equation (B-10). Also shown is
the same calculation with e" = 0.02 and all other quantities unchanged. S
During the course of the computation all the imaginary parts in equation (B-3)

were monitored and found to be small compared to the real part of the cor-

responding quantities. Thus the results are valid for the entire range of a

given in equation (B-10).
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350. tiH 3000 GAUSS

326.0-

W 30.0-
i

C-,

E 284.0-
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240.0 J
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Figure B-1. Imaginary part of propagation constant, q =q' + iq", with E' =

10 and E" = 0.1, or at 90 GHz. Slab thickness restricted so that only

dominant mode propagates.
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